SYNERGISTIC EFFECTS IN THE PHOTOOXIDATION OF ETHYLENE AND VINYL CHLORIDE INDUCED BY 1-3 BUTADIENE

C. Chiorboli, C. A. Bignozzi, A. Maldotti and V. Carassiti

Istituto Chimico dell'Università, Centro di Studio sulla Fotochimica e Reattività degli Stati Eccitati dei Composti di Coordinazione del C.N.R., Ferrara (Italy)

Evidence exists that olefins react readily (eq. 3) with free radicals and reactive species generated by the olefin photooxidation processes 1 and $2^{1,4}$.

1)	HC + O(³ P)	>	free radicals
2)	HC + 03	>	free radicals
3)	HC + free radicals	>	Products

It has been proved that in mixed olefin systems, the less reactive olefins react readily with reactive intermediates (principally OH and RO_2) produced by photooxidation involving a more reactive olefins ³. Thus, the reactivity of an olefin can be increased by mixing with more reactive olefins. Therefore a smog chamber investigation on mixture effects of polluted industrial atmospheres of know hydrocarbon content seems to be worth while.

The experimental results shown in table 1 and II were obtained by irradiation of $C_2H_4 - C_4H_6 - NO_2$ and $C_2H_3CI - C_4H_6 - NO_2$ systems. The light intensity expressed as first order rate constant for NO_2 photolysis was $0.29 \pm 0.02 \text{ min}^{-1}$. The photooxidation rate data, obtained from pseudo zero order kinetics of C_2H_4 and C_2H_3CI decay, show that an increase of the C_4H_6 concentation in both systems causes at first an acceleration and then a slowing down of the C_2H_4 and C_2H_3CI photooxidation processes. These results indicate the occurrence of positive and negative synergistic effects which depend on the relative concentrations of the hydrocarbons.

In recent studies 1,2,3 , it has been demonstrated that the steady-state concentration of OH, HO₂, RO₂ and O(3 P) radicals, which are the main responsible of hydrocarbon photooxidation are not strictly dependent from the starting hydrocarbon concentration, but mainly upon the type of hydrocarbon present in the polluted atmosphere.

The behavior of the $C_2H_4-C_4H_6-NO_2$ and $C_2H_3Cl-C_4H_6-NO_2$ mixtures shows that two opposing effects exist: the first, which causes an increase in the photooxidation rate of less reactive hydrocarbon, is due to the higher radical concentrations generated by butadiene. This acceleration effect does not work at low C_4H_6 starting concentration, since the time for the attain ment at the steady-state of the reactive intermediates appreciably increases at low starting concentration of hydrocarbons.

The second effect, which prevails at higher concentration of C_4H_6 and causes a decrease of the photooxidation rate of C_2H_4 and C_2H_3 Cl, results from the competition between the more reactive C_4H_6 and the less reactive C_2H_4 or C_2H_3 Cl in the bimolecular scavenging of the free radicals. Owing to this competition, the photooxidation of ethylene and vinyl chloride is quenched by high concentration of butadiene.

	T.	a	b	1	е	I
--	----	---	---	---	---	---

Photooxidation rate of C_2H_4 as a function of C_4H_6 concentrationPhotooxidation rate of
ethylene in ppb/min0.06.60.08.31.48.02.75.94.13.65.9

All experiments were carried out with initial concentration of 3.5 ppm NO₂ and 4.2 ppm $C_{2}H_{4}$ in air.

Table	II
-------	----

Photooxidation rate of C_2H_3Cl as a function of C_4H_6 concentration.

Photooxidation rate of Butadiene vinyl chloride in ppb/min ppm 4.2 0.0 4.1 0.6 5.7 2.0 5.0 3-3 4.2 6.4 3.4 8.6 11.4 2.4

All experiments were carried out with initial concentration of 3.8 ppm NO₂ and 4.0 ppm C_2H_3Cl in air.

REFERENCES

- K.K. Yeung, C.R. Phillips, Environ. Sci. Technol. <u>9</u>, 732, (1971).
- J.G. Calvert, R.D. McQuigg, Int. J. Chem. Kinet. Symp. 1, <u>7</u>, 113, (1975).
- Y.V. Nguyen, C.R. Phillips, Water Air & Soil Pollut., 9,
 3, (1978).
- J.J. Bufalini, A.P. Altshuller, Environ. Sci. Technol., <u>1</u>, 133, (1967).

This work was supported by the Italian Research Council (C.N.R.). Programma finalizzato " Promozione della qualità dell'ambiente ", subprogetto " Aria ".